Accelerated Large Scale Optimization by Concomitant Hashing

نویسندگان

  • Yadong Mu
  • John Wright
  • Shih-Fu Chang
چکیده

Traditional locality-sensitive hashing (LSH) techniques aim to tackle the curse of explosive data scale by guaranteeing that similar samples are projected onto proximal hash buckets. Despite the success of LSH on numerous vision tasks like image retrieval and object matching, however, its potential in large-scale optimization is only realized recently. In this paper we further advance this nascent area. We first identify two common operations known as the computational bottleneck of numerous optimization algorithms in a large-scale setting, i.e., min/max inner product. We propose a hashing scheme for accelerating min/max inner product, which exploits properties of order statistics of statistically correlated random vectors. Compared with other schemes, our algorithm exhibits improved recall at a lower computational cost. The effectiveness and efficiency of the proposed method are corroborated by theoretic analysis and several important applications. Especially, we use the proposed hashing scheme to perform approximate `1 regularized least squares with dictionaries with millions of elements, a scale which is beyond the capability of currently known exact solvers. Nonetheless, it is highlighted that the focus of this paper is not on a new hashing scheme for approximate nearest neighbor problem. It exploits a new application for the hashing techniques and proposes a general framework for accelerating a large variety of optimization procedures in computer vision.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning to Hash with Partial Tags: Exploring Correlation between Tags and Hashing Bits for Large Scale Image Retrieval

Similarity search is an important technique in many large scale vision applications. Hashing approach becomes popular for similarity search due to its computational and memory efficiency. Recently, it has been shown that the hashing quality could be improved by combining supervised information, e.g. semantic tags/labels, into hashing function learning. However, tag information is not fully expl...

متن کامل

Deep Class-Wise Hashing: Semantics-Preserving Hashing via Class-wise Loss

Deep supervised hashing has emerged as an influential solution to large-scale semantic image retrieval problems in computer vision. In the light of recent progress, convolutional neural network based hashing methods typically seek pair-wise or triplet labels to conduct the similarity preserving learning. However, complex semantic concepts of visual contents are hard to capture by similar/dissim...

متن کامل

Ranking Preserving Hashing for Fast Similarity Search

Hashing method becomes popular for large scale similarity search due to its storage and computational efficiency. Many machine learning techniques, ranging from unsupervised to supervised, have been proposed to design compact hashing codes. Most of the existing hashing methods generate binary codes to efficiently find similar data examples to a query. However, the ranking accuracy among the ret...

متن کامل

Kernel-Based Supervised Discrete Hashing for Image Retrieval

Recently hashing has become an important tool to tackle the problem of large-scale nearest neighbor searching in computer vision. However, learning discrete hashing codes is a very challenging task due to the NP hard optimization problem. In this paper, we propose a novel yet simple kernel-based supervised discrete hashing method via an asymmetric relaxation strategy. Specifically, we present a...

متن کامل

RHash: Robust Hashing via `∞-norm Distortion

Hashing is an important tool in large-scale machine learning. Unfortunately, current data-dependent hashing algorithms are not robust to small perturbations of the data points, which degrades the performance of nearest neighbor (NN) search. The culprit is the minimization of the `2-norm, average distortion among pairs of points to find the hash function. Inspired by recent progress in robust op...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012